Search results for "Spiking neural network"
showing 10 items of 13 documents
Live demonstration: multiplexing AER asynchronous channels over LVDS Links with Flow-Control and Clock-Correction for Scalable Neuromorphic Systems
2017
Paper presented at the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), held in Baltimore, MD, USA, on 28-31 May 2017.
Motor-skill learning in an insect inspired neuro-computational control system
2017
In nature, insects show impressive adaptation and learning capabilities. The proposed computational model takes inspiration from specific structures of the insect brain: after proposing key hypotheses on the direct involvement of the mushroom bodies (MBs) and on their neural organization, we developed a new architecture for motor learning to be applied in insect-like walking robots. The proposed model is a nonlinear control system based on spiking neurons. MBs are modeled as a nonlinear recurrent spiking neural network (SNN) with novel characteristics, able to memorize time evolutions of key parameters of the neural motor controller, so that existing motor primitives can be improved. The ad…
FPGA implementation of Spiking Neural Networks supported by a Software Design Environment
2011
Abstract This paper is focused on the creation of Spiking Neural Networks (SNN) in hardware due to their advantages for certain problem solving and their similarity to biological neural system. One of the main uses of this neural structure is pattern classification. The chosen model for the spiking neuron is the Spike Response Model (SRM). For SNN design and implementation, a software application has been developed to provide easy creation, simulation and automatic generation of the hardware model. VHDL was used for the hardware model. This paper describes the functionality of SNN and the design procedure followed to obtain a working neural system in both software and hardware. Designed VHD…
Modeling the insect mushroom bodies: application to a delayed match-to-sample task.
2013
Despite their small brains, insects show advanced capabilities in learning and task solving. Flies, honeybees and ants are becoming a reference point in neuroscience and a main source of inspiration for autonomous robot design issues and control algorithms. In particular, honeybees demonstrate to be able to autonomously abstract complex associations and apply them in tasks involving different sensory modalities within the insect brain. Mushroom Bodies (MBs) are worthy of primary attention for understanding memory and learning functions in insects. In fact, even if their main role regards olfactory conditioning, they are involved in many behavioral achievements and learning capabilities, as …
Hardware-accelerated spike train generation for neuromorphic image and video processing
2014
Recent studies concerning Spiking Neural Networks show that they are a powerful tool for multiple applications as pattern recognition, image tracking, and detection tasks. The basic functional properties of SNN reside in the use of spike information encoding as the neurons are specifically designed and trained using spike trains. We present a novel and efficient frequency encoding algorithm with Gabor-like receptive fields using probabilistic methods and targeted to FPGA for online pro-cessing. The proposed encoding is versatile, modular and, when applied to images, it is able to perform simple image transforms as edge detection, spot detection or removal, and Gabor-like filtering without a…
Frequency spike encoding using Gabor-like receptive fields
2014
Abstract Spiking Neural Networks (SNN) are a popular field of study. For a proper development of SNN algorithms and applications, special encoding methods are required. Signal encoding is the first step since signals need to be converted into spike trains as the primary input to an SNN. We present an efficient frequency encoding system using receptive fields. The proposed encoding is versatile and it can provide simple image transforms like edge detection, spot detection or removal, or Gabor-like filtering. The proposed encoding can be used in many application areas as image processing and signal processing for detection and classification.
Spiking Neural Networks models targeted for implementation on Reconfigurable Hardware
2017
La tesis presentada se centra en la denominada tercera generación de redes neuronales artificiales, las Redes Neuronales Spiking (SNN) también llamadas ‘de espigas’ o ‘de eventos’. Este campo de investigación se convirtió en un tema popular e importante en la última década debido al progreso de la neurociencia computacional. Las Redes Neuronales Spiking, que tienen no sólo la plasticidad espacial sino también temporal, ofrecen una alternativa prometedora a las redes neuronales artificiales clásicas (ANN) y están más cerca de la operación real de las neuronas biológicas ya que la información se codifica y transmite usando múltiples espigas o eventos en forma de trenes de pulsos. Este campo h…
Noise-assisted persistence and recovery of memory state in a memristive spiking neuromorphic network
2021
Abstract We investigate the constructive role of an external noise signal, in the form of a low-rate Poisson sequence of pulses supplied to all inputs of a spiking neural network, consisting in maintaining for a long time or even recovering a memory trace (engram) of the image without its direct renewal (or rewriting). In particular, this unique dynamic property is demonstrated in a single-layer spiking neural network consisting of simple integrate-and-fire neurons and memristive synaptic weights. This is carried out by preserving and even fine-tuning the conductance values of memristors in terms of dynamic plasticity, specifically spike-timing-dependent plasticity-type, driven by overlappi…
Fast spiking neural network architecture for low-cost FPGA devices
2012
Spiking Neural Networks (SNN) consist of fully interconnected computation units (neurons) based on spike processing. This type of networks resembles those found in biological systems studied by neuroscientists. This paper shows a hardware implementation for SNN. First, SNN require the inputs to be spikes, being necessary a conversion system (encoding) from digital values into spikes. For travelling spikes, each neuron interconnection is characterized by weights and delays, requiring an internal neuron processing by a Postsynaptic Potential (PSP) function and membrane potential threshold evaluation for a postsynaptic output spike generation. In order to model a real biological system by arti…
Simplified spiking neural network architecture and STDP learning algorithm applied to image classification
2015
Spiking neural networks (SNN) have gained popularity in embedded applications such as robotics and computer vision. The main advantages of SNN are the temporal plasticity, ease of use in neural interface circuits and reduced computation complexity. SNN have been successfully used for image classification. They provide a model for the mammalian visual cortex, image segmentation and pattern recognition. Different spiking neuron mathematical models exist, but their computational complexity makes them ill-suited for hardware implementation. In this paper, a novel, simplified and computationally efficient model of spike response model (SRM) neuron with spike-time dependent plasticity (STDP) lear…